Copied to
clipboard

G = C22×C4○D28order 448 = 26·7

Direct product of C22 and C4○D28

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C4○D28, C14.4C25, D2814C23, C28.77C24, D14.1C24, C24.73D14, Dic7.2C24, Dic1413C23, (C23×C4)⋊8D7, (C4×D7)⋊8C23, C7⋊D47C23, C2.5(D7×C24), (C23×C28)⋊11C2, (C2×C28)⋊15C23, (C22×C4)⋊46D14, C4.76(C23×D7), (C22×D28)⋊25C2, (C2×D28)⋊66C22, C22.7(C23×D7), (C2×C14).326C24, (C22×C28)⋊62C22, (C22×Dic14)⋊26C2, (C2×Dic14)⋊77C22, C23.347(C22×D7), (C22×C14).433C23, (C23×C14).116C22, (C2×Dic7).296C23, (C22×D7).245C23, (C23×D7).116C22, (C22×Dic7).239C22, C141(C2×C4○D4), C71(C22×C4○D4), (C2×C4×D7)⋊72C22, (D7×C22×C4)⋊26C2, (C2×C4)⋊12(C22×D7), (C2×C14)⋊13(C4○D4), (C2×C7⋊D4)⋊56C22, (C22×C7⋊D4)⋊22C2, SmallGroup(448,1368)

Series: Derived Chief Lower central Upper central

C1C14 — C22×C4○D28
C1C7C14D14C22×D7C23×D7D7×C22×C4 — C22×C4○D28
C7C14 — C22×C4○D28
C1C22×C4C23×C4

Generators and relations for C22×C4○D28
 G = < a,b,c,d,e | a2=b2=c4=e2=1, d14=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d13 >

Subgroups: 3332 in 890 conjugacy classes, 463 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C14, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C23×C4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C22×C4○D4, C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C22×Dic7, C2×C7⋊D4, C22×C28, C22×C28, C23×D7, C23×C14, C22×Dic14, D7×C22×C4, C22×D28, C2×C4○D28, C22×C7⋊D4, C23×C28, C22×C4○D28
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, C25, C22×D7, C22×C4○D4, C4○D28, C23×D7, C2×C4○D28, D7×C24, C22×C4○D28

Smallest permutation representation of C22×C4○D28
On 224 points
Generators in S224
(1 136)(2 137)(3 138)(4 139)(5 140)(6 113)(7 114)(8 115)(9 116)(10 117)(11 118)(12 119)(13 120)(14 121)(15 122)(16 123)(17 124)(18 125)(19 126)(20 127)(21 128)(22 129)(23 130)(24 131)(25 132)(26 133)(27 134)(28 135)(29 153)(30 154)(31 155)(32 156)(33 157)(34 158)(35 159)(36 160)(37 161)(38 162)(39 163)(40 164)(41 165)(42 166)(43 167)(44 168)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 147)(52 148)(53 149)(54 150)(55 151)(56 152)(57 198)(58 199)(59 200)(60 201)(61 202)(62 203)(63 204)(64 205)(65 206)(66 207)(67 208)(68 209)(69 210)(70 211)(71 212)(72 213)(73 214)(74 215)(75 216)(76 217)(77 218)(78 219)(79 220)(80 221)(81 222)(82 223)(83 224)(84 197)(85 196)(86 169)(87 170)(88 171)(89 172)(90 173)(91 174)(92 175)(93 176)(94 177)(95 178)(96 179)(97 180)(98 181)(99 182)(100 183)(101 184)(102 185)(103 186)(104 187)(105 188)(106 189)(107 190)(108 191)(109 192)(110 193)(111 194)(112 195)
(1 186)(2 187)(3 188)(4 189)(5 190)(6 191)(7 192)(8 193)(9 194)(10 195)(11 196)(12 169)(13 170)(14 171)(15 172)(16 173)(17 174)(18 175)(19 176)(20 177)(21 178)(22 179)(23 180)(24 181)(25 182)(26 183)(27 184)(28 185)(29 223)(30 224)(31 197)(32 198)(33 199)(34 200)(35 201)(36 202)(37 203)(38 204)(39 205)(40 206)(41 207)(42 208)(43 209)(44 210)(45 211)(46 212)(47 213)(48 214)(49 215)(50 216)(51 217)(52 218)(53 219)(54 220)(55 221)(56 222)(57 156)(58 157)(59 158)(60 159)(61 160)(62 161)(63 162)(64 163)(65 164)(66 165)(67 166)(68 167)(69 168)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)(81 152)(82 153)(83 154)(84 155)(85 118)(86 119)(87 120)(88 121)(89 122)(90 123)(91 124)(92 125)(93 126)(94 127)(95 128)(96 129)(97 130)(98 131)(99 132)(100 133)(101 134)(102 135)(103 136)(104 137)(105 138)(106 139)(107 140)(108 113)(109 114)(110 115)(111 116)(112 117)
(1 154 15 168)(2 155 16 141)(3 156 17 142)(4 157 18 143)(5 158 19 144)(6 159 20 145)(7 160 21 146)(8 161 22 147)(9 162 23 148)(10 163 24 149)(11 164 25 150)(12 165 26 151)(13 166 27 152)(14 167 28 153)(29 121 43 135)(30 122 44 136)(31 123 45 137)(32 124 46 138)(33 125 47 139)(34 126 48 140)(35 127 49 113)(36 128 50 114)(37 129 51 115)(38 130 52 116)(39 131 53 117)(40 132 54 118)(41 133 55 119)(42 134 56 120)(57 174 71 188)(58 175 72 189)(59 176 73 190)(60 177 74 191)(61 178 75 192)(62 179 76 193)(63 180 77 194)(64 181 78 195)(65 182 79 196)(66 183 80 169)(67 184 81 170)(68 185 82 171)(69 186 83 172)(70 187 84 173)(85 206 99 220)(86 207 100 221)(87 208 101 222)(88 209 102 223)(89 210 103 224)(90 211 104 197)(91 212 105 198)(92 213 106 199)(93 214 107 200)(94 215 108 201)(95 216 109 202)(96 217 110 203)(97 218 111 204)(98 219 112 205)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 171)(2 170)(3 169)(4 196)(5 195)(6 194)(7 193)(8 192)(9 191)(10 190)(11 189)(12 188)(13 187)(14 186)(15 185)(16 184)(17 183)(18 182)(19 181)(20 180)(21 179)(22 178)(23 177)(24 176)(25 175)(26 174)(27 173)(28 172)(29 210)(30 209)(31 208)(32 207)(33 206)(34 205)(35 204)(36 203)(37 202)(38 201)(39 200)(40 199)(41 198)(42 197)(43 224)(44 223)(45 222)(46 221)(47 220)(48 219)(49 218)(50 217)(51 216)(52 215)(53 214)(54 213)(55 212)(56 211)(57 165)(58 164)(59 163)(60 162)(61 161)(62 160)(63 159)(64 158)(65 157)(66 156)(67 155)(68 154)(69 153)(70 152)(71 151)(72 150)(73 149)(74 148)(75 147)(76 146)(77 145)(78 144)(79 143)(80 142)(81 141)(82 168)(83 167)(84 166)(85 139)(86 138)(87 137)(88 136)(89 135)(90 134)(91 133)(92 132)(93 131)(94 130)(95 129)(96 128)(97 127)(98 126)(99 125)(100 124)(101 123)(102 122)(103 121)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(112 140)

G:=sub<Sym(224)| (1,136)(2,137)(3,138)(4,139)(5,140)(6,113)(7,114)(8,115)(9,116)(10,117)(11,118)(12,119)(13,120)(14,121)(15,122)(16,123)(17,124)(18,125)(19,126)(20,127)(21,128)(22,129)(23,130)(24,131)(25,132)(26,133)(27,134)(28,135)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,198)(58,199)(59,200)(60,201)(61,202)(62,203)(63,204)(64,205)(65,206)(66,207)(67,208)(68,209)(69,210)(70,211)(71,212)(72,213)(73,214)(74,215)(75,216)(76,217)(77,218)(78,219)(79,220)(80,221)(81,222)(82,223)(83,224)(84,197)(85,196)(86,169)(87,170)(88,171)(89,172)(90,173)(91,174)(92,175)(93,176)(94,177)(95,178)(96,179)(97,180)(98,181)(99,182)(100,183)(101,184)(102,185)(103,186)(104,187)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195), (1,186)(2,187)(3,188)(4,189)(5,190)(6,191)(7,192)(8,193)(9,194)(10,195)(11,196)(12,169)(13,170)(14,171)(15,172)(16,173)(17,174)(18,175)(19,176)(20,177)(21,178)(22,179)(23,180)(24,181)(25,182)(26,183)(27,184)(28,185)(29,223)(30,224)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,217)(52,218)(53,219)(54,220)(55,221)(56,222)(57,156)(58,157)(59,158)(60,159)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,118)(86,119)(87,120)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,113)(109,114)(110,115)(111,116)(112,117), (1,154,15,168)(2,155,16,141)(3,156,17,142)(4,157,18,143)(5,158,19,144)(6,159,20,145)(7,160,21,146)(8,161,22,147)(9,162,23,148)(10,163,24,149)(11,164,25,150)(12,165,26,151)(13,166,27,152)(14,167,28,153)(29,121,43,135)(30,122,44,136)(31,123,45,137)(32,124,46,138)(33,125,47,139)(34,126,48,140)(35,127,49,113)(36,128,50,114)(37,129,51,115)(38,130,52,116)(39,131,53,117)(40,132,54,118)(41,133,55,119)(42,134,56,120)(57,174,71,188)(58,175,72,189)(59,176,73,190)(60,177,74,191)(61,178,75,192)(62,179,76,193)(63,180,77,194)(64,181,78,195)(65,182,79,196)(66,183,80,169)(67,184,81,170)(68,185,82,171)(69,186,83,172)(70,187,84,173)(85,206,99,220)(86,207,100,221)(87,208,101,222)(88,209,102,223)(89,210,103,224)(90,211,104,197)(91,212,105,198)(92,213,106,199)(93,214,107,200)(94,215,108,201)(95,216,109,202)(96,217,110,203)(97,218,111,204)(98,219,112,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,171)(2,170)(3,169)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,185)(16,184)(17,183)(18,182)(19,181)(20,180)(21,179)(22,178)(23,177)(24,176)(25,175)(26,174)(27,173)(28,172)(29,210)(30,209)(31,208)(32,207)(33,206)(34,205)(35,204)(36,203)(37,202)(38,201)(39,200)(40,199)(41,198)(42,197)(43,224)(44,223)(45,222)(46,221)(47,220)(48,219)(49,218)(50,217)(51,216)(52,215)(53,214)(54,213)(55,212)(56,211)(57,165)(58,164)(59,163)(60,162)(61,161)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,141)(82,168)(83,167)(84,166)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(112,140)>;

G:=Group( (1,136)(2,137)(3,138)(4,139)(5,140)(6,113)(7,114)(8,115)(9,116)(10,117)(11,118)(12,119)(13,120)(14,121)(15,122)(16,123)(17,124)(18,125)(19,126)(20,127)(21,128)(22,129)(23,130)(24,131)(25,132)(26,133)(27,134)(28,135)(29,153)(30,154)(31,155)(32,156)(33,157)(34,158)(35,159)(36,160)(37,161)(38,162)(39,163)(40,164)(41,165)(42,166)(43,167)(44,168)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,198)(58,199)(59,200)(60,201)(61,202)(62,203)(63,204)(64,205)(65,206)(66,207)(67,208)(68,209)(69,210)(70,211)(71,212)(72,213)(73,214)(74,215)(75,216)(76,217)(77,218)(78,219)(79,220)(80,221)(81,222)(82,223)(83,224)(84,197)(85,196)(86,169)(87,170)(88,171)(89,172)(90,173)(91,174)(92,175)(93,176)(94,177)(95,178)(96,179)(97,180)(98,181)(99,182)(100,183)(101,184)(102,185)(103,186)(104,187)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195), (1,186)(2,187)(3,188)(4,189)(5,190)(6,191)(7,192)(8,193)(9,194)(10,195)(11,196)(12,169)(13,170)(14,171)(15,172)(16,173)(17,174)(18,175)(19,176)(20,177)(21,178)(22,179)(23,180)(24,181)(25,182)(26,183)(27,184)(28,185)(29,223)(30,224)(31,197)(32,198)(33,199)(34,200)(35,201)(36,202)(37,203)(38,204)(39,205)(40,206)(41,207)(42,208)(43,209)(44,210)(45,211)(46,212)(47,213)(48,214)(49,215)(50,216)(51,217)(52,218)(53,219)(54,220)(55,221)(56,222)(57,156)(58,157)(59,158)(60,159)(61,160)(62,161)(63,162)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,118)(86,119)(87,120)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,113)(109,114)(110,115)(111,116)(112,117), (1,154,15,168)(2,155,16,141)(3,156,17,142)(4,157,18,143)(5,158,19,144)(6,159,20,145)(7,160,21,146)(8,161,22,147)(9,162,23,148)(10,163,24,149)(11,164,25,150)(12,165,26,151)(13,166,27,152)(14,167,28,153)(29,121,43,135)(30,122,44,136)(31,123,45,137)(32,124,46,138)(33,125,47,139)(34,126,48,140)(35,127,49,113)(36,128,50,114)(37,129,51,115)(38,130,52,116)(39,131,53,117)(40,132,54,118)(41,133,55,119)(42,134,56,120)(57,174,71,188)(58,175,72,189)(59,176,73,190)(60,177,74,191)(61,178,75,192)(62,179,76,193)(63,180,77,194)(64,181,78,195)(65,182,79,196)(66,183,80,169)(67,184,81,170)(68,185,82,171)(69,186,83,172)(70,187,84,173)(85,206,99,220)(86,207,100,221)(87,208,101,222)(88,209,102,223)(89,210,103,224)(90,211,104,197)(91,212,105,198)(92,213,106,199)(93,214,107,200)(94,215,108,201)(95,216,109,202)(96,217,110,203)(97,218,111,204)(98,219,112,205), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,171)(2,170)(3,169)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,185)(16,184)(17,183)(18,182)(19,181)(20,180)(21,179)(22,178)(23,177)(24,176)(25,175)(26,174)(27,173)(28,172)(29,210)(30,209)(31,208)(32,207)(33,206)(34,205)(35,204)(36,203)(37,202)(38,201)(39,200)(40,199)(41,198)(42,197)(43,224)(44,223)(45,222)(46,221)(47,220)(48,219)(49,218)(50,217)(51,216)(52,215)(53,214)(54,213)(55,212)(56,211)(57,165)(58,164)(59,163)(60,162)(61,161)(62,160)(63,159)(64,158)(65,157)(66,156)(67,155)(68,154)(69,153)(70,152)(71,151)(72,150)(73,149)(74,148)(75,147)(76,146)(77,145)(78,144)(79,143)(80,142)(81,141)(82,168)(83,167)(84,166)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(112,140) );

G=PermutationGroup([[(1,136),(2,137),(3,138),(4,139),(5,140),(6,113),(7,114),(8,115),(9,116),(10,117),(11,118),(12,119),(13,120),(14,121),(15,122),(16,123),(17,124),(18,125),(19,126),(20,127),(21,128),(22,129),(23,130),(24,131),(25,132),(26,133),(27,134),(28,135),(29,153),(30,154),(31,155),(32,156),(33,157),(34,158),(35,159),(36,160),(37,161),(38,162),(39,163),(40,164),(41,165),(42,166),(43,167),(44,168),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,147),(52,148),(53,149),(54,150),(55,151),(56,152),(57,198),(58,199),(59,200),(60,201),(61,202),(62,203),(63,204),(64,205),(65,206),(66,207),(67,208),(68,209),(69,210),(70,211),(71,212),(72,213),(73,214),(74,215),(75,216),(76,217),(77,218),(78,219),(79,220),(80,221),(81,222),(82,223),(83,224),(84,197),(85,196),(86,169),(87,170),(88,171),(89,172),(90,173),(91,174),(92,175),(93,176),(94,177),(95,178),(96,179),(97,180),(98,181),(99,182),(100,183),(101,184),(102,185),(103,186),(104,187),(105,188),(106,189),(107,190),(108,191),(109,192),(110,193),(111,194),(112,195)], [(1,186),(2,187),(3,188),(4,189),(5,190),(6,191),(7,192),(8,193),(9,194),(10,195),(11,196),(12,169),(13,170),(14,171),(15,172),(16,173),(17,174),(18,175),(19,176),(20,177),(21,178),(22,179),(23,180),(24,181),(25,182),(26,183),(27,184),(28,185),(29,223),(30,224),(31,197),(32,198),(33,199),(34,200),(35,201),(36,202),(37,203),(38,204),(39,205),(40,206),(41,207),(42,208),(43,209),(44,210),(45,211),(46,212),(47,213),(48,214),(49,215),(50,216),(51,217),(52,218),(53,219),(54,220),(55,221),(56,222),(57,156),(58,157),(59,158),(60,159),(61,160),(62,161),(63,162),(64,163),(65,164),(66,165),(67,166),(68,167),(69,168),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151),(81,152),(82,153),(83,154),(84,155),(85,118),(86,119),(87,120),(88,121),(89,122),(90,123),(91,124),(92,125),(93,126),(94,127),(95,128),(96,129),(97,130),(98,131),(99,132),(100,133),(101,134),(102,135),(103,136),(104,137),(105,138),(106,139),(107,140),(108,113),(109,114),(110,115),(111,116),(112,117)], [(1,154,15,168),(2,155,16,141),(3,156,17,142),(4,157,18,143),(5,158,19,144),(6,159,20,145),(7,160,21,146),(8,161,22,147),(9,162,23,148),(10,163,24,149),(11,164,25,150),(12,165,26,151),(13,166,27,152),(14,167,28,153),(29,121,43,135),(30,122,44,136),(31,123,45,137),(32,124,46,138),(33,125,47,139),(34,126,48,140),(35,127,49,113),(36,128,50,114),(37,129,51,115),(38,130,52,116),(39,131,53,117),(40,132,54,118),(41,133,55,119),(42,134,56,120),(57,174,71,188),(58,175,72,189),(59,176,73,190),(60,177,74,191),(61,178,75,192),(62,179,76,193),(63,180,77,194),(64,181,78,195),(65,182,79,196),(66,183,80,169),(67,184,81,170),(68,185,82,171),(69,186,83,172),(70,187,84,173),(85,206,99,220),(86,207,100,221),(87,208,101,222),(88,209,102,223),(89,210,103,224),(90,211,104,197),(91,212,105,198),(92,213,106,199),(93,214,107,200),(94,215,108,201),(95,216,109,202),(96,217,110,203),(97,218,111,204),(98,219,112,205)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,171),(2,170),(3,169),(4,196),(5,195),(6,194),(7,193),(8,192),(9,191),(10,190),(11,189),(12,188),(13,187),(14,186),(15,185),(16,184),(17,183),(18,182),(19,181),(20,180),(21,179),(22,178),(23,177),(24,176),(25,175),(26,174),(27,173),(28,172),(29,210),(30,209),(31,208),(32,207),(33,206),(34,205),(35,204),(36,203),(37,202),(38,201),(39,200),(40,199),(41,198),(42,197),(43,224),(44,223),(45,222),(46,221),(47,220),(48,219),(49,218),(50,217),(51,216),(52,215),(53,214),(54,213),(55,212),(56,211),(57,165),(58,164),(59,163),(60,162),(61,161),(62,160),(63,159),(64,158),(65,157),(66,156),(67,155),(68,154),(69,153),(70,152),(71,151),(72,150),(73,149),(74,148),(75,147),(76,146),(77,145),(78,144),(79,143),(80,142),(81,141),(82,168),(83,167),(84,166),(85,139),(86,138),(87,137),(88,136),(89,135),(90,134),(91,133),(92,132),(93,131),(94,130),(95,129),(96,128),(97,127),(98,126),(99,125),(100,124),(101,123),(102,122),(103,121),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(112,140)]])

136 conjugacy classes

class 1 2A···2G2H2I2J2K2L···2S4A···4H4I4J4K4L4M···4T7A7B7C14A···14AS28A···28AV
order12···222222···24···444444···477714···1428···28
size11···1222214···141···1222214···142222···22···2

136 irreducible representations

dim111111122222
type++++++++++
imageC1C2C2C2C2C2C2D7C4○D4D14D14C4○D28
kernelC22×C4○D28C22×Dic14D7×C22×C4C22×D28C2×C4○D28C22×C7⋊D4C23×C28C23×C4C2×C14C22×C4C24C22
# reps112124213842348

Matrix representation of C22×C4○D28 in GL5(𝔽29)

10000
01000
00100
000280
000028
,
280000
01000
00100
00010
00001
,
280000
012000
001200
00010
00001
,
10000
001200
012000
0002721
0001620
,
10000
001700
012000
000828
000521

G:=sub<GL(5,GF(29))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,0,27,16,0,0,0,21,20],[1,0,0,0,0,0,0,12,0,0,0,17,0,0,0,0,0,0,8,5,0,0,0,28,21] >;

C22×C4○D28 in GAP, Magma, Sage, TeX

C_2^2\times C_4\circ D_{28}
% in TeX

G:=Group("C2^2xC4oD28");
// GroupNames label

G:=SmallGroup(448,1368);
// by ID

G=gap.SmallGroup(448,1368);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=e^2=1,d^14=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^13>;
// generators/relations

׿
×
𝔽